Error Reduction, Convergence and Optimality for Adaptive Mixed Finite Element Methods for Diffusion Equations
نویسندگان
چکیده
Error reduction, convergence and optimality are analyzed for adaptive mixed finite element methods (AMFEM) for diffusion equations without marking the oscillation of data. Firstly, the quasi-error, i.e. the sum of the stress variable error and the scaled error estimator, is shown to reduce with a fixed factor between two successive adaptive loops, up to an oscillation. Secondly, the convergence of AMFEM is obtained with respect to the quasi-error plus the divergence of the flux error. Finally, the quasi-optimal convergence rate is established for the total error, i.e. the stress variable error plus the data oscillation. Mathematics subject classification: 65N30, 65N15, 65N12, 65N50.
منابع مشابه
Convergence and optimality of adaptive mixed finite element methods
The convergence and optimality of adaptive mixed finite element methods for the Poisson equation are established in this paper. The main difficulty for mixed finite element methods is the lack of minimization principle and thus the failure of orthogonality. A quasi-orthogonality property is proved using the fact that the error is orthogonal to the divergence free subspace, while the part of the...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملA new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کاملConvergence and Optimality of Adaptive Methods in the Finite Element Exterior Calculus Framework
Finite Element Exterior Calculus (FEEC) was developed by Arnold, Falk, Winther and others over the last decade to exploit the observation that mixed variational problems can be posed on a Hilbert Complex, and Galerkin-type mixed methods can then be obtained by solving finite-dimensional subcomplex problems. Stability and consistency of the resulting methods then follow directly from the framewo...
متن کاملValparaiso Numerico Iv
The impact of adaptive mesh-refinement in computational partial differential equations cannot be overestimated, and convergence with optimal rates has mathematically been proved for certain model problems. We aim at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods as well as boundary element methods in the spirit of [1]. For thi...
متن کامل